Neuronal networks with NMDARs and lateral inhibition implement winner-takes-all
نویسنده
چکیده
A neural circuit that relies on the electrical properties of NMDA synaptic receptors is shown by numerical and theoretical analysis to be capable of realizing the winner-takes-all function, a powerful computational primitive that is often attributed to biological nervous systems. This biophysically-plausible model employs global lateral inhibition in a simple feedback arrangement. As its inputs increase, high-gain and then bi- or multi-stable equilibrium states may be assumed in which there is significant depolarization of a single neuron and hyperpolarization or very weak depolarization of other neurons in the network. The state of the winning neuron conveys analog information about its input. The winner-takes-all characteristic depends on the nonmonotonic current-voltage relation of NMDA receptor ion channels, as well as neural thresholding, and the gain and nature of the inhibitory feedback. Dynamical regimes vary with input strength. Fixed points may become unstable as the network enters a winner-takes-all regime, which can lead to entrained oscillations. Under some conditions, oscillatory behavior can be interpreted as winner-takes-all in nature. Stable winner-takes-all behavior is typically recovered as inputs increase further, but with still larger inputs, the winner-takes-all characteristic is ultimately lost. Network stability may be enhanced by biologically plausible mechanisms.
منابع مشابه
Winner-take-all networks with lateral excitation
In this paper we present two analog VLSI circuits that implement current mode winner-take-all (WTA) networks with lateral excitation. We describe their principles of operation and compare their performance to previously proposed circuits. The desirable properties of these circuits, namely compactness, low power consumption, collective processing and robustness to noisy inputs make them ideal fo...
متن کاملA Simple Neural Network Exhibiting Selective Activation of Neuronal Ensemblies: From Winner-Take-All to Winners-Share-All
A neuroecological equation of the Lotka-Volterra type for mean firing rate is derived from the conventional membrane dynamics of a neural network with lateral inhibition and self-inhibition. Neural selection mechanisms employed by the competitive neural network receiving external inputs are studied with analytic and numerical calculations. A remarkable findings is that the strength of lateral i...
متن کاملP30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain
Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...
متن کاملPii: S0928-4257(00)01092-5
Based on experiments with the locust olfactory system, we demonstrate that model sensory neural networks with lateral inhibition can generate stimulus specific identity-temporal patterns in the form of stimulus-dependent switching among small and dynamically changing neural ensembles (each ensemble being a group of synchronized projection neurons). Networks produce this switching mode of dynami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015